3M Technical Data Bulletin

Helmets

Published: October 2014

Rev 6: Replaces all previously published Bulletins on this topic until superseded.

Background

On November 22, 2006, OSHA's (Occupational Safety and Health Administration) final rule regarding Assigned Protection Factors (APFs) became effective. The revisions OSHA made to its regulation for respiratory protection (29 CFR 1910.134) included the addition of definitions and requirements for Assigned Protection Factors (APFs) and Maximum Use Concentrations (MUCs). The revisions also supersede many of the APF requirements established in substance specific standards. The final rule defines APFs and MUCs as:

Assigned Protection Factor (APF) means the workplace level of respiratory protection that a respirator or class of respirators is expected to provide to employees when the employer implements a continuing, effective respiratory protection program as specified by this section [meaning 29 CFR 1910.134].

Table 1: Assigned Protection Factors⁵

Type of Respirator ^{1,2}	Quarter Mask	Half Mask	Full Facepiece	Helmet/ Hood	Loose- Fitting Facepiece
1. Air-Purifying Respirator	5	10 ³	50	—	
2. Powered Air-Purifying Respirator (PAPR)	—	50	1,000	25/1,000 ⁴	25
3. Supplied-Air Respirator (SAR) or Airline Respirator					
Demand mode	—	10	50	—	_
Continuous flow mode		50	1,000	25/1,000 ⁴	25
Pressure-demand or other positive-pressure mode		50	1,000		
4. Self-Contained Breathing Apparatus (SCBA)					
Demand mode		10	50	50	
Pressure-demand or other positive-pressure mode (e.g., open/closed circuit)			10,000	10,000	_

(Table 1 and notes are from OSHA's Respiratory Protection Standard: 29 CFR 1910.134)

Notes:

- Employers may select respirators assigned for use in higher workplace concentrations of a hazardous substance for use at lower concentrations of that substance, or when required respirator use is independent of concentration.
- The assigned protection factors in Table 1 are only effective when the employer implements a continuing, effective respirator program as required by this section (29 CFR 1910.134), including training, fit testing, maintenance, and use requirements.
- 3. This APF category includes filtering facepieces, and half masks with elastomeric facepieces.
- 4. The employer must have evidence provided by the respirator manufacturer that testing of these respirators demonstrates performance at a level of protection of 1,000 or greater to receive an APF of 1,000. This level of performance can best be demonstrated by performing a WPF or SWPF study or equivalent testing. Absent such testing, all other PAPRs and SARs with helmets/hoods are to be treated as loose-fitting facepiece respirators, and receive an APF of 25.
- These APFs do not apply to respirators used solely for escape. For escape respirators used in association with specific substances covered by 29 CFR 1910 subpart Z, employers must refer to the appropriate substance-specific standards in that subpart. Escape respirators for other IDLH atmospheres are specified by 29 CFR 1910.134 (d)(2)(ii).

M Technical Data Bulletin

#175 —Assigned Protection Factors (APF) for 3MTM Hoods and Helmets

Maximum Use Concentration (MUC) means the maximum atmospheric concentration of a hazardous substance from which an employee can be expected to be protected when wearing a respirator, and is determined by the assigned protection factor of the respirator or class of respirators and the exposure limit of the hazardous substance. The MUC can be determined mathematically by multiplying the assigned protection factor specified for a respirator by the required OSHA permissible exposure limit, short-term exposure limit, or ceiling limit. When no OSHA exposure limit is available for a hazardous substance, an employer must determine a MUC on the basis of relevant available information and informed professional judgment.

Table 1 of 29 CFR 1910.134 lists the APFs the employer must use. Footnote 4 of table 1 states: "The employer must have evidence provided by the respirator manufacturer that testing of these respirators demonstrates performance at a level of protection of 1000 or greater to receive an APF of 1000. This level of performance can best be demonstrated by performing a WPF or SWPF study or equivalent testing. Absent such testing, all other PAPRs and SARs with helmets/hoods are to be treated as loose-fitting facepiece respirators, and receive an APF of 25." The definitions of WPF (workplace protection factor) and SWPF (simulated workplace protection factor) are provided in the Federal

Register August 24, 2006, Vol. 71 Number 164.

Purpose

This Technical Data Bulletin outlines the objective data used to support an APF of 1000, for the 3M hoods and helmets (respiratory inlet coverings) listed in Table 2 when used in their NIOSH approved configurations. The APF is independent of whether the hood or helmet is used in a powered air or supplied air mode. This bulletin will be updated if OSHA issues official changes or clarification and as new WPF and SWPF studies become available.

#175 —Assigned Protection Factors (APF) for 3M[™] Hoods and Helmets

Table 2 — 3M Hoods and Helmets with APF of 1000

Part Number	NIOSH Approved Air Sources	Test Method	APF
	-Breathe Easy TM		
	-Air-Mate TM		
BE-10	-Supplied air	$SWPF^{1}$	1000
	-Breathe Easy TM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1000
BE-10BR	-Supplied air	SWPF ²	1000
	-TR-300 -GVP	$SWPF^4$	
H-410	-TR-500 -GVF -TR-600 -Supplied air	WPF ⁹	1000
П-410	-TR-300 -GVP	WFF	1000
H-420	-TR-500 -GVF -TR-600 -Supplied air	WPF ³	1000
11-420	-TR-300 -GVP	W F I	1000
H-610	-TR-500 -GVF -TR-600 -Supplied air	$SWPF^4$	1000
11-010	- IR-000 - Supplied all	5WT1	1000
L-901	-TR-300		
L-905	-GVP	WPF^{6}	1000
L 705	-Supplied air		1000
	-TR-300		
	-GVP		
L-901SG	-Adflo TM	$SWPF^{10}$	1000
L-905SG	-Supplied air	2	1000
		WPF ^{1,5}	
W-8100	-Supplied air	$SWPF^7$	1000
	-TR-300		
	-TR-600		
	-GVP		
M-405	-Breathe Easy TM		
M-407	-Adflo TM	$SWPF^{11}$	1000
	-Supplied air		
	-TR-300		
	-TR-600		
	-GVP	12	
S-403	-Breathe Easy TM	SWPF ¹²	1000
	-Supplied air		
	-TR-300		
G (22	-TR-600		
S-433	-GVP		1000
S-533	-Breathe Easy TM	SWPF ¹³	1000
	-Supplied air		
S-605/S-655	-TR-300 -TR-600		
S-607/S-657	-1K-000 -GVP	$SWPF^{10}$	1000
S-707/S-757	-Supplied air	5 11 1	1000
5-107/5-757	-Supplied an -TR-300		
	-TR-500 -TR-600		
S-805/S-855	-GVP		
5 505/5 055		$SWPF^{10}$	1000
S-807/S-857	-Breathe Easy TM	SWPF	1 1000

Breathe Easy, Air-Mate and Adflo are trademarks of 3M Company, used under license in Canada.

3 Technical Data Bulletin

#175 —Assigned Protection Factors (APF) for 3M[™] Hoods and Helmets

References

 Cohen, Howard J., Hecker, Lawrence H., Mattheis, Darrell K., Biermann, Arthur H., Foote, Kenneth L. Simulated Workplace Protection Factor Study of Powered Air-Purifying and Supplied Air Respirators. AIHA Journal 62:595-604 (2001)
 RDECOM Protection Factor Testing of the 3M Breathe Easy (BE-10) Powered Air Purifying Respirator (PAPR), 8 May 2003

3. Nelson, Thomas J., Wheeler, Teresa H., and Timothy S. Mustard. Workplace Protection Factors-Supplied Air Hood. AIHA Journal 62-96-100; 2001.

4. Simulated Workplace Protection Factor Study Performed by 3M Occupational Health & **Environmental Safety** Division. Small particle (NaCl) Quantitative Fit Test based on NIOSH CBRN Escape Protocol CET--APRS-STP-CBRN-0452.30 member Los Alamos grid panel. (2006) 5. Johnston AR, Stokes DW, Mullins HE and Rhoe CR (1987) Workplace Protection Factor Study on a Supplied Air Abrasive Blasting Respirator. Paper presented at the 1987 American Industrial Hygiene Conference, Montreal, Canada 6. Colton, C E, Bidwell JO (2001) Workplace Protection Factor Study On A Continuous

During Aircraft Sanding, Paper presented at the 2001 American Industrial Hygiene Conference, New Orleans, LA. 7. Los Alamos National Laboratory Aerosol Penetration and Pressure Testing of 3M W-8100 Whitecap and 3M W-

8100 Whitecap II Helmets, 20 May 1998.

 8. Colton C E, Mulins HE and Bidwell JO (1993) Workplace Protection Factor Study on a Airline Respirator with a Loose Fitting Hood During Furnace Tear Down. Paper presented at the 1997 American Industrial Hygiene Conference, New Orleans LA.
 9. Janssen LL, Bidwell JO,

Cuta K, Nelson TJ (2008) Workplace Performance of a Hood-Style Supplied-Air Respirator. Journal of Occupational and Environmental Hygiene, 5:7, 438-443.

10. Small Particle (NaCl) Quantitative Performance Testing Performed by 3M OH&ESD Division. 25 member Los Alamos grid panel. Exercises selected from NIOSH CET-PAPR-CBRN 0553 and NIOSH PAPR or RTC-APR-STP-00005-5a-06 protocols 2008.

11. Small Particle (NaCl) Quantitative Performance

Testing Performed by 3M OH&ESD Division. 25 member NIOSH Bivariate Fit Test Panel. Exercises selected from NIOSH CET-PAPR-STP

CBRN-0553 and NIOSH PAPR or RTC-APR-STP-00005-5a-06 protocols 2008.

12. Small Particle (NaCl) Quantitative Performance Testing Performed by 3M OH&ESD Division. 29 member NIOSH Bivariate Fit Test Panel. Exercises selected from NIOSH CET-PAPR-STP CBRN-0553 and NIOSH PAPR or RTC-APR-STP-00005-5a-06 protocols 2008.

13. Small Particle (NaCl) Quantitative Performance Testing Performed by 3M OH&ESD Division. 29 member Los Alamos Grid Panel. Exercises selected from NIOSH CET-PAPR-STP CBRN-0553 and NIOSH PAPR or RTC-APR-STP-00005-5a-06 protocols 2008.

3M Personal Safety Division (PSD) In the U.S., contact: Customer Service 1-800-328-1667 Technical Assistance 1-800-243-4630 Internet

www.3M.com/PPESafety For other 3M products 1-800-3M HELPS

In Canada, contact: 3M Canada Company, PSD P.O. Box 5757 London, Ontario N6A 4T1 Customer Service 1-800-265-1840 Technical Assistance (Canada) only) 1-800-267-4414 Internet

www.3M.com/CA/PPESafety